

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

CONTINUOUS INTEGRATION

&

CONTINUOUS DELIVERY

 TESTING MICRO SERVICES PART II OF II

Combination of many Micro Services form a complex application. When it is

necessary to test each service as a unit and component, it also becomes essential

to test the service in an integrated environment and make sure the Application

behaves as expected. More emphasis has to be given around User Acceptance

testing and monitoring the application as a whole post production. The objective

of applying test strategies is a part of implementing Continuous Integration and

Continuous Deployment, at the same time to reduce Technical debt in the

application.

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

 INTEGRATION TESTING

In a Micro Service environment, each service communicate with other service

whenever there is a request and each service has their own data storage. It

becomes necessitate to test the integration between these services and

interactions between the components. Integration testing tests each service

requests and determines the error paths in cases of service failure or timeout errors.

Essentially, Integration tests for basic success at each request.

Things to consider:

❖ Connection failures could cause false errors

❖ Unit testing and Contract testing can be used to test the behavior of the

system

❖ All these test can be moved to the build pipeline as part of Continuous

Integration

Integration tests can be executed once the build is pushed to the staging

environment after running the Unit, Component and Contract tests. As basically,

after the services are tested individually, we need to make sure that the interactions

between them are also verified. Integration test collects all the module to exercise

communication paths and check for errors at each module when they interact with

other services. This layer of testing is critical in a micro service architecture as it

ensures that the system works well and the dependencies with the external services

behave as expected.

 END TO END TESTING

In order to verify the system meets the external requirements, an end-to-end test

is required. In a state-full system where there lot of calculations, algorithms and

behavior involved, there are chances that any of the test doubles go missing or the

black box testing that was done stands in-effective when you put together to a

single state. Setting up an end-to-end test is more of a sanity check to make sure

that all of the other test haven’t missed anything.

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

An Automated User Interface testing also becomes a part of the end-to-end testing

and yet cannot be ignore as this is going to be the face for the consumer. Manual

UI Testing becomes rigorous when there is a build released each day. There are

various open source tools to do this job and this can integrated as part of the

DevOps pipeline to perform a User Acceptance Testing and validate the Test case

results. An end-to-end is also followed by non-functional tests, such as testing for

Security, Stability and Performance. Whilst in most of the cases, this is executed

less frequently, however can be combined with a specific set of protocol or use

case.

 CODE TESTING

In most of the scenarios, the job of a Developer ends when the code is checked-in.

How do we make sure that the Developer has followed the right code standard?

Drive adoption in Development team with security self-service approach that is

easy to configure and enables parallel execution. In a complex application where

there are multiple developers working to develop various micro services with many

new build ready for deployment, it gets difficult to keep a track on the code when

there is a bug. The job gets tedious to allocate the bug to the concerned developer.

An Intelligent ticketing and tracking solution with # tag conceptualization reduces

the manual effort and essentially automates the entire code check-in/check-out

process.

Things to Consider:

❖ Auto Triage and Framework with baseline plugins

❖ Reporting with a Dashboard view

❖ Pre-Commit and Post-Commit Testing Stages

info@newtglobal.com

White Paper © 2017 Newt Global Consulting, LLC

 APPLICATION MONITORING

Change requests and new features keeps piling, with the Developers and Testers

having less time to react when there is a production issue. In most of the cases,

unknown errors and downtime issues keeps the production team busy in

supporting the applications with a build that almost passed the quality 100%.

When one of the few service fail to communicate with each other or do not respond

to any of the request over HTTP, then we would have to deep dive into the

application to do a root cause analysis. An Application Monitoring Framework

takes the pain of the Production Team by discovering such bottle-necks in live

scenarios and provide regular updates to the Development team on the ongoing

issues.

