

 White Paper © 2017 Newt Global Consulting, LLC

BUILDING A PROFICIENT MICRO SERVICES USING API GATEWAY

 The intent to develop applications using Micro Services fails when we do not decide how

the application clients interact with the micro services restful API’s. This is not a concern

in building a monolithic style application, since there is just one set of endpoints that are

typically replicated with a load balancer to distribute traffic and a circuit breaker to

monitor traffic. The primary reason for using services as components in a micro service

architecture is that services are independently deployable. This means that each Service

has to communicate with the Application client each time there is a request.

CONTINUOUS INTEGRATION
&

 CONTINUOUS DELIVERY

 White Paper © 2017 Newt Global Consulting, LLC

INTRODUCTION

Consider an example of developing an Order Management application in a Micro Service

pattern that will be predominantly used by third party vendors. It is likely that you need

to implement an Order detail page that displays the information on any selected product

by the vendor. In a Micro Service architecture, the data displayed on the order detail page

is owned by multiple micro services. So, each time when there is a request to fetch the

product details on the order page, the client communicates with each of the service to

display the results with a load balancer in place that distributes requests across the

available instances.

There are many challenges and limitation with these requests. Services consists of multiple

processes that will be developed and deployed together. Some of these services might

not be web friendly or might use different messaging protocol that is not browser or

firewall friendly, thus eventually resulting as ‘no response’ whenever there is a call to that

particular service. In a complex application the client has to communicate with several

separate services during each request that might result in a mismatch between the needs

of the client and the API’s exposed by each micro service. The granularity of APIs provided

by micro services is often different than what a client needs.

 White Paper © 2017 Newt Global Consulting, LLC

PURPOSE OF AN API GATEWAY

An approach to tackle these kind of issues is to use an API Gateway with the micro service

architecture. An API Gateway is a single point entry for all client calls. A single API gateway

can create multiple api’s, one for each platform. For example, we can support mobile

applications, multiple browsers, server side applications at a single instance without

downtime. An API gateway creates custom API for each of these clients and takes the

responsibility of request routing, composition and protocol translation. The gateway

essentially aggregates the results to provide a single point of view by invoking multiple

micro services. An API gateway works well with Eureka server and when Spring cloud

supports other discovery client then those as well. Other advantages with API gateway in

terms of centralization and control: rate limiting, authentication, auditing, logging and

implementing a simple reverse proxy with Spring Cloud.

 White Paper © 2017 Newt Global Consulting, LLC

There are many challenges and limitation with these requests. Services consists of multiple

processes that will be developed and deployed together. Some of these services might

not be web friendly or might use different messaging protocol that is not browser or

firewall friendly, thus eventually resulting as ‘no response’ whenever there is a call to that

particular service. In a complex application the client has to communicate with several

separate services during each request that might result in a mismatch between the needs

of the client and the API’s exposed by each micro service. The granularity of APIs provided

by micro services is often different than what a client needs.

TESTING API’S

What may be the dream of the API delivery team is to have bug free API gateway. As one

might expect, using an API gateway has both benefits and drawbacks. One of the major

benefit is the encapsulation process. The API gateway should never become a developer’s

bottle neck in terms of deployment and maintenance. It is always important that the

gateway is as light as possible and best practice is to create API virtualization at the time

of development, so that the testing team can start testing the API during the process. API

virtualization simulates the minimum behaviors of one or more API endpoints instead of

API production. This enables frequent and comprehensive testing while the Development

is still under process. This is similar to creating a Sandbox environment for the testing

team to access the data and server.

Another way of testing is by creating API mocks that imitates the software components

used by the Developers. However, this is a traditional method of testing when

virtualization is not possible.

 White Paper © 2017 Newt Global Consulting, LLC

CONCLUSION

t makes sense to have an API gateway developed for most of the applications that are

built on a Micro Service architecture, as the main objective is to make sure a single

unresponsive service should not fail the entire request. The main feature of the API

gateway is that it provides a custom API for each of the application’s clients that calls for

different platform. Though it is additional effort to develop an API gateway, the long term

sustainability and benefits overcomes the barrier of using Micro Service architecture and

ensures complex applications run on a simple back end process. Access Management,

Authentication & Validation, Manageability & Resilience and the ease of integrating with

third party tools are some of the parameters that need to consider to choose a reliable

API gateway.

I

